
PR
EP

RIN
T

Active Learning for Visual Acuity Testing

Luis A. Lesmes∗
Adaptive Sensory Technology, Inc.

San Diego, CA
luis.lesmes@adaptivesensorytech.com

Michael Dorr†
Adaptive Sensory Technology, Inc.

San Diego, CA
michael.dorr@adaptivesensorytech.com

ABSTRACT
Wepresent Quantitative Visual Acuity (qVA), a novel active learning
algorithm to assess visual acuity. It uses Monte Carlo simulations
and an information maximization strategy during stimulus selec-
tion, and Bayesian inference to iteratively update the best estimate
of the true underlying function. Compared to the state of the art,
qVA uses a richer model for observer behaviour, and we use sim-
ulations to show its excellent test-retest repeatability and ability
to detect change. In simulations of clinical studies with 50 “con-
trol” subjects demonstrating no visual change, and 50 “treatment”
subjects demonstrating a 0.10 logMAR change (corresponding to
one line of the gold-standard ETDRS letter chart), the qVA detected
visual change with an AUC of 93%, relative to 78% performance by
the ETDRS standard, given the same number of presented letters.
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1 INTRODUCTION
Recent breakthrough progress in the development of intelligent
systems is promising to radically alter many application domains,
including healthcare. Data-driven approaches such as deep learning
may realize the potential of personalized medicine by extracting
meaningful patterns from both structured and unstructured data
sources such as gene and protein expression data [2] on the one
hand and clinical records [11] and behavioural data coming from
fitness trackers [12] or social media platforms [5] on the other hand.
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Another important potential source of rich clinical information is
imaging data [18]. In ophthalmology, for example, optical coherence
tomography (OCT) provides a mapping of the retinal layers and
their thickness, and may be used to detect and localize lesions or
abnormal blood vessel growth, which is a symptom of diseases
that are among the leading causes of blindness, e.g. age-related
macular degeneration and diabetic retinopathy. Machine Learning
systems have recently begun to outperform human raters in the
interpretation of OCT images [6].

However, even though the detection and assessment of struc-
tual changes in retinal tissue is of obvious interest to researchers
and clinicians, the most critical question cannot – as of yet – be
answered by structural imaging alone: How well does the patient
see?

To answer this question, the current standard for behavioural
visual function assessment is visual acuity (VA) testing (see Fig. 1).
VA describes the smallest (full-contrast) stimulus size at which the
stimulus (typically, a letter) can still be recognized; because of the
probabilistic nature of the psychometric function (see Fig. 2), “recog-
nition” is defined by a threshold (e.g. 60%) on the probability of a
correct response. This probabilistic threshold also is the reason why
traditional paper-based letter charts, where a patient has to read
down a set of lines of progressively smaller letters, are necessarily
imprecise: In order to obtain a robust estimate of the threshold,
many letters have to be presented near the threshold, but on paper
charts the majority of read letters is sized well above threshold.

While computerized adaptive vision tests exist that place more
letters near threshold (specifically, the continuously updated esti-
mate of the threshold, based on test history), e.g. [1], these present
single letters instead of chart rows, use a simplified model for the
psychometric function with a fixed range, and are not commonly
used in clinical practice or clinical trials, where precise assessment
of visual function is paramount to evaluate the natural progression
of disease and the efficacy of ophthalmic interventions.

In this paper, we present a new algorithm, Quantitative Visual
Acuity, that uses an Active Learning procedure to simultaneously
estimate the threshold and range parameters of the psychometric
function (see Fig. 2). Based on simulations and in comparison to the
current gold standard of clinical trial visual function assessment,
we show that qVA rapidly converges to an accurate estimate of the
true underlying function, and that the qVA output is highly reliable
across runs, for both standard and novel measures of repeatability.
Finally, we use ROC analysis to show that qVA provides excellent
specificity and sensitivity to small changes in (simulated) visual
function, demonstrating its utility for clinical trials and clinical
practice.
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Figure 1: ETDRS eye chart (left) and a schematic of Quantitative Visual Acuity (right). The ETDRS chart is read from top to
bottom until the first line with at least three mistakes, which means that test time (for most subjects) is wasted in the trivially
easy upper part, but few letters are presented near the threshold of legibility. In qVA, only one three-letter row (’trial’) is
presented at a time on a computer monitor, and a new line (with optimal letter size for this particular subject, given the test
history) is presented after the subject’s responses have been entered on a tablet device.

2 METHODS
2.1 Early Treatment Diabetic Retinopathy

Study Chart
The state of the art of behavioural visual function assessment in
clinical trials is still the Early Treatment Diabetic Retinopathy Study
(ETDRS) chart [9]. Available in different versions to reduce the
risk of memorization across runs, it shows (from top to bottom)
progressively smaller rows of five Sloan letters each. Because of the
logarithmic relationship between stimulus intensity and perceptual
experience [15], the letter size per row decrements logarithmically
by 26%, or 0.1 logMAR, in each step, beginning with a letter size of
1.0 logMAR at the top.

The zero line on this chart corresponds to a minimum angle
of resolution of 1 arcmin. While this is often regarded as “nor-
mal” vision (also expressed by the alternative formulation of “20/20
vision”, being able to see at a distance of 20 feet what the refer-
ence observer can discern at the same distance; 20/20=1.0, and
log101.0=0.0 logMAR), the majority of subjects (possibly with opti-
cal correction, e.g. habitually worn glasses or contact lenses) achieve
VA scores better than 0.0 logMAR; excellent vision corresponds to
VA scores of ≤-0.3 logMAR [8, 16].

During ETDRS testing, the subject begins to read the chart from
the top and continues until he or she encounters the first row where
at least three (out of five) letters cannot be recognized anymore.
For each correctly recognized letter on the chart, a score of 0.02
(five letters per row correspond to 0.1 logMAR) is subtracted from
the baseline score of 70 to arrive at the overall score.

2.2 Quantitative Visual Acuity
2.2.1 Model of the Psychometric Function. Psychometric functions
that map sensory stimuli to human behavioural responses are char-
acterized by i) a region where the stimulus signal is too weak (e.g.
the presented letters are too small) for the observer to recognize the
stimulus, so that performance is at chance level; ii) a region where
the stimulus signal is strong enough for the observer to reliably

recognize the stimulus every time (performance at 100%); and iii)
an intermediate, transition region that is typically assumed to have
a sigmoidal shape and in which the observer is uncertain about the
stimulus identity.

The psychometric function at the core of qVA is visualized on
the left side of Fig. 2. It is parameterized by Θ, the threshold at
which recognition performance is at 67%, and the range ρ, which
indicates the width of the psychometric function from its 33% to
its 98.2% points. A larger range indicates a shallower slope of the
psychometric function, i.e. a larger region of uncertainty. Formally,
the psychometric function Ψ′ with threshold Θ and range ρ is
defined as returning the signal detection theory sensitivity index
d ′ for a stimulus of size τ ,

log10Ψ
′(τ ,Θ, ρ) = log10(6) +

δ

2ρ
(τ − Θ) −

1
2
log10

(
8 + 10

δ
ρ (τ−Θ)

)
with the constant δ = log10(35) − log10(1.25). The d ′ can be fur-
ther converted to Ψn , i.e. the probabilities of different responses
(zero – three correct out of three letters per row), see the right side
of Fig. 2. These probabilities are used to adjust stimulus size for
each row presentation during the test as described in the following
subsection.

2.2.2 Active Learning. The procedure starts at trial t = 0 with a
uniform prior P0(ν ) over a grid of parameter sets νi = (Θi , ρi ); in
the current implementation, Θ ∈ [−0.5, 2.0] with 1001 equidistant
steps, and ρ ∈ [0.1, 1.2] with 51 log-equidistant steps. In each trial,
qVA picks the most informative out of 100 possible stimulus sizes
(ranging from -0.4 to 1.6 logMAR in 0.02 logMAR steps) and presents
three randomly sampled Sloan letters of that size to the observer.

With the response rt that encodes the number of correctly rec-
ognized letters of size τ (where the probability of r is determined
by the psychometric function Ψ) and the set of previous responses
r0, ...,t−1, the belief over P(ν ) is iteratively updated according to
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Figure 2: Single-letter psychometric function with threshold Θ = 0.3 and range ρ = 0.4 (left) and the corresponding probability
functions for different numbers of correct responses when three letters are presented (right). For a single letter, the probability
of correct identification is at chance level (here, with 10 letters to choose from, 10%) for small letter sizes, i.e.≪ 0 logMAR, and
at ceiling (100%) for very large letter sizes, i.e. > 0.5 logMAR. At threshold size (here, 0.3 logMAR), the probability of a correct
response is 67%. For a row of three letters, the most likely number of correctly identified letters at threshold size is thus two,
but all other responses are also possible.

Bayes’ Rule,

pt (νi |rt , r0, ...,t−1,τ )

= pt (rt , r0, ...,t−1,τ |νi ) ·
pt−1(νi )

pt (rt , r0, ...,t−1,τ )

= pt−1(νi |rt , r0, ...,t−1,τ ) ·
p(rt ,τ |νi )∑

j pt−1(νi )p(rt ,τ |νj )
.

Critically, the most informative stimulus size is determined by a
Monte Carlo simulation of likely outcomes [13], based on a sample
of 1000 grid nodes ν (randomly drawn from the posterior of the
previous time step, Pt−1(ν )), and the expected information gain for
each stimulus size τ , i.e. the reduction in entropy H of P(ν ):

It (rt (τ );ν ) = H

(∫
ν
pt (ν ) · Ψν (τ )dν

)
−

∫
ν
pt (ν ) · H (Ψν (τ ))dν .

2.3 Simulations
We simulated 100 observers whose acuity parameters Θ and ρ were
randomly sampled from the empirical posterior distributions of
qVA assessments (with 45 rows) of a cohort of young adults of
ocular health who were tested under corrected and blurred vision
conditions. This sample gave us a range from excellent to moderate
visual performance (Θ in [-0.24, 0.43] logMAR, µ = 0.0, ρ in [0.09,
0.53] logMAR, µ = 0.26), and empirically plausible combinations of
Θ and ρ.

Because the ETDRS chart is designed to estimate a threshold at a
slightly different probability correct rate (three out of five letters, i.e.
60%, vs. the qVA’s two out of three, i.e. 67%), the threshold parameter
Θ of the simulated observers was slightly adjusted upwards for the
ETDRS simulations (depending on ρ, up to ≈0.03 logMAR).

To assess repeatability, we simulated five “baseline” runs for each
method. For qVA, 100 trials (of three letters each) were simulated
per run; for ETDRS, runs were simulated until the termination
criterion (first row with less than three letters correct) held, which
on average occured after 11.8 rows (58.9 letters).

To assess the sensitivity to change, each observer was simulated
for another six “change” runs with an upward change in the thresh-
old parameter Θ (i.e. worsened vision) by 0.01, 0.02, 0.03, 0.05, 0.07,
and 0.1 logMAR. Based on correlations in the empirical data, the
range parameter ρ was also changed, specifically by one-third the
amount of the change in Θ.

2.4 Performance Analysis
2.4.1 Repeatability and Precision. According to ISO norm 5725-1,
the “precision” of a measurement device (such as a vision test) is the
similarity of repeated measurements of the same signal (observer)
to each other, and we therefore (and in line with the clinically
well-established Bland-Altman analysis [3]) calculated the standard
deviation of the test-retest differences. In order tomake the resulting
numbers comparable to those in the literature, we computed the
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standard deviation for all possible pairings of the five runs into test
and retest, and report the mean over these standard deviations.

However, a comparison of different tests by the test-retest stan-
dard deviation is vulnerable to artefacts because it assumes ho-
moscedasticity, is sensitive to scaling of the test score, and may be
reduced by quantization and floor and ceiling effects.

We therefore also follow the concept of “precision” as it is used
in Information Retrieval. Intuitively, we want to obtain the same
test score for repeated tests of the same subject, but different test
scores for different subjects; in other words, a test score should be
able to identify a subject within a larger population. In Information
Retrieval terms, we use a subject’s test score as the query and try
to retrieve this subject’s retest score from among all retests by their
similarity to the query; the Mean Average Precision (MAP) [7]
then is the precision ( the share of relevant retrieved items, i.e. the
inverse of the rank of this subject’s retest score) for which recall is 1
(the same subject’s retest has been found). We repeat this procedure
for each pair of test runs and for each subject and report the grand
mean.

A further advantage of MAP is that it is straightforward to ex-
tend it to multidimensional test signals. Here, we compute the
similarity needed for ranking by calculating the Euclidean distance
between tests in the twodimensional space of the parameters Θ and
ρ. Because these parameters have different numerical ranges and
different reliability, we linearly scaled them with weights that were
found by crossvalidation using the data from the first two runs; the
mean MAP for test-retest combinations of the remaining three runs
is reported.

2.4.2 Change Detection Performance. Reliability may be a desired
test property if exact absolute test scores are of interest. However,
for most real-world applications, much more important than abso-
lute scores is the assessment of relative scores, i.e. the sensitivity of
a test to a change in the true underlying visual function, for example
the change due to fitting different contact lenses or the progression
or remediation of disease over time or due to an intervention [10].

We therefore performed Receiver-Operator Characteristic analy-
sis for small changes in Θ and ρ and calculated the area under the
ROC curve for a summary statistic of both sensitivity and speci-
ficity. In line with clinical trial design and to have a yardstick for
random test-retest noise effects, we split our simulated observers
into two groups.

The first 50 subjects of our simulated cohort were assigned to
the “control” group and the vision “changes” were computed for
the first vs. second baseline run (corresponding to test-retest re-
peatability above). In contrast, the second half were assigned to the
“intervention” group and score changes were computed between
the first baseline run and the corresponding change run.

3 RESULTS
Results of the repeatability analysis can be seen in Fig. 3 and Fig. 4.
The baseline performance of the threshold estimate of the ETDRS
letter chart (dashed lines) was surpassed after three and seven trials
for MAP and s.d., respectively, and both repeatability measures of
the qVA continued to improve (s.d. decreased, MAP increased) with
an increasing number of trials. The range parameter ρ is much
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Figure 3: Repeatability (s.d. of test-retest differences) of qVA
plotted as a function of number of trials. Dashed line in-
dicates ETDRS chart baseline performance at the average
number of ETDRS letters (58.9).
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Figure 4: Mean Average Precision of qVA plotted as a func-
tion of number of trials. Dashed line indicates ETDRS chart
baseline performance at the average number of ETDRS let-
ters (58.9).
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Figure 5: Area under the ROC curve results for detection of changes in visual function by qVA as a function of number of
trials. Dashed lines indicate performance for the ETDRS chart at the average number of ETDRS trials.

harder to constrain and required a larger number of trials. No-
tably, its test-retest standard deviation reached the level of ETDRS’s
threshold estimation after about 55 trials, but it took about 85 trials
to reach the same MAP performance.

Because of the (relative) unreliability of the range parameter ρ,
the linear combination of Θ and ρ (“both” in Fig. 4) at first reduces
MAP. However, after about 20 trials, the multidimensional analysis
provided a benefit that continued to increase with the number of
trials.

The results for change detection performance are shown in Fig. 5.
The dashed lines indicate ETDRS performance (after 58.9 letters on
average) and it can be seen that with ETDRS, even the largest change
(of 0.1 logMAR) can be detected with an AUC of only 0.78, failing to
reach an AUC of 0.8. Using qVA, however, the AUC increases with
the number of trials, and an AUC of 0.8 is reached after 5, 11, 19, 34,
and 49 trials for changes of 0.1, 0.07, 0.05, 0.03, and 0.02 logMAR,
respectively.

4 CONCLUSION
We here introduced qVA, a novel algorithm for visual acuity es-
timation that uses active learning techniques to quickly adapt to
an observer’s visual performance, and efficiently only presents in-
formative stimuli to save testing time. A similar strategy has been
used before to rapidly estimate the full contrast sensitivity function
of an observer by learning the parameters of a parametrized model
[14]. Compared to the state of the art, qVA estimates not only the
threshold Θ of the psychometric function, but also its range ρ (the
inverse of its slope), which has been shown to vary across test
populations [4].

Because test-retest repeatability is commonly used in the litera-
ture as a proxy for “precision” of a test, we calculated two different
repeatability measures. By design, MAP should be less vulnerable to
scaling and quantization artefacts when comparing different tests
than the standard deviation of test-retest differences. Even though
its advantage may not be immediately apparent when looking at the
threshold parameter Θ in isolation, Θ and the range ρ had different
numerical ranges, and thus yielded different results for MAP and
standard deviation. Only with MAP was it possible to evaluate the
test-retest repeatability of the twodimensional parameter set of Θ
and ρ in combination.

Overall, qVA demonstrated both excellent repeatability and abil-
ity to detect change. While the number of trials we simulated here
(100 per test run) may be too time-consuming in clinical practice,
comparable change detection performance to the current gold stan-
dard in clinical trials was achieved after 5–7 rows (15–21 letters
vs. 58.9 letters with ETDRS), and performance increased with ad-
ditional rows. Such improved precision could be used to reduce
the number of patients in a clinical trial, which reduces costs and
thus in turn would enable to run more trials with e.g. different
compounds or different dosing regimes, increasing the chances of
achieving clinically meaningful effects. Alternatively, the ability
to identify very small differences in intervention effects may en-
able iterative improvement over current gold standard treatments.
For example, the advent of anti-VEGF injections about a decade
ago dramatically improved outcomes over then-existing laser treat-
ments for patients with age-related macular degeneration [17], with
patients re-gaining more than 0.2 logMAR of acuity instead of a
further loss of visual function. However, further improvements
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so far have proven elusive: Some early studies of new pharmaco-
logical compounds, such as the Fovista anti-PGDF therapy, have
hinted at additional effect sizes of about 0.02–0.08 logMAR, which
are difficult to reliably detect using the ETDRS letter chart. In our
simulations, however, 11–49 rows of qVA sufficed to detect such
changes (corresponding to a 4.7%–20% change in stimulus size)
with an AUC of 0.8. In the future, larger psychophysical studies are
needed to empirically validate the potential of the qVA algorithm
to rapidly and precisely assess visual function.
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